Small Alliances in Graphs

نویسندگان

  • Rodolfo Carvajal
  • Martín Matamala
  • Ivan Rapaport
  • Nicolas Schabanel
چکیده

Let G = (V, E) be a graph. A nonempty subset S ⊆ V is a (strong defensive) alliance of G if every node in S has at least as many neighbors in S than in V \S. This work is motivated by the following observation: when G is a locally structured graph its nodes typically belong to small alliances. Despite the fact that finding the smallest alliance in a graph is NP-hard, we can at least compute in polynomial time depthG(v), the minimum distance one has to move away from an arbitrary node v in order to find an alliance containing v. We define depth(G) as the sum of depthG(v) taken over v ∈ V . We prove that depth(G) can be at most 1 4 (3n −2n+3) and it can be computed in time O(n). Intuitively, the value depth(G) should be small for clustered graphs. This is the case for the plane grid, which has a depth of 2n. We generalize the previous for bridgeless planar regular graphs of degree 3 and 4. The idea that clustered graphs are those having a lot of small alliances leads us to analyze the value of rp(G) = IP{S contains an alliance}, with S ⊆ V randomly chosen. This probability goes to 1 for planar regular graphs of degree 3 and 4. Finally, we generalize an already known result by proving that if the minimum degree of the graph is logarithmically lower bounded and if S is a large random set (roughly |S| > n 2 ), then also rp(G) → 1 as n → ∞.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On global (strong) defensive alliances in some product graphs

A defensive alliance in a graph is a set $S$ of vertices with the property that every vertex in $S$ has at most one moreneighbor outside of $S$ than it has inside of $S$. A defensive alliance $S$ is called global if it forms a dominating set. The global defensive alliance number of a graph $G$ is the minimum cardinality of a global defensive alliance in $G$. In this article we study the global ...

متن کامل

Strong Alliances in Graphs

For any simple connected graph $G=(V,E)$, a defensive alliance is a subset $S$ of $V$ satisfying the condition that every vertex $vin S$ has at most one more neighbour in $V-S$ than it has in $S$. The minimum cardinality of any defensive alliance in $G$ is called the alliance number of $G$, denoted $a(G)$. In this paper, we introduce a new type of alliance number called $k$-strong alliance numb...

متن کامل

A Model for Strategic Alliance Functions for Small and Medium-Sized Enterprises

This research aims at identifying and presenting a model for strategic alliance functions for successful small and medium-sized enterprises. The functions of strategic alliance include strengthening competitive advantage, strengthening entrepreneurial and innovative capabilities, strengthening social capital, and internationalization of small and medium-sized enterprises. Research method was bo...

متن کامل

Defensive alliances in regular graphs and circulant graphs

In this paper we study defensive alliances in some regular graphs. We determine which subgraphs could a critical defensive alliance of a graph G induce, if G is 6-regular and the cardinality of the alliance is at most 8. In particular, we study the case of circulant graphs, i.e. Cayley graphs on a cyclic group. The critical defensive alliances of a circulant graph of degree at most 6 are comple...

متن کامل

Matching Integral Graphs of Small Order

In this paper, we study matching integral graphs of small order. A graph is called matching integral if the zeros of its matching polynomial are all integers. Matching integral graphs were first studied by Akbari, Khalashi, etc. They characterized all traceable graphs which are matching integral. They studied matching integral regular graphs. Furthermore, it has been shown that there is no matc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007